Bedrock Knowledge Bases
AWS Bedrock Knowledge Bases allows you to connect your LLM's to your organization's data, letting your models retrieve and reference information specific to your business.
| Property | Details |
|---|---|
| Description | Bedrock Knowledge Bases connects your data to LLM's, enabling them to retrieve and reference your organization's information in their responses. |
| Provider Route on LiteLLM | bedrock in the litellm vector_store_registry |
| Provider Doc | AWS Bedrock Knowledge Bases โ |
Quick Startโ
LiteLLM Python SDKโ
Example using LiteLLM Python SDK
import os
import litellm
from litellm.vector_stores.vector_store_registry import VectorStoreRegistry, LiteLLM_ManagedVectorStore
# Init vector store registry with your Bedrock Knowledge Base
litellm.vector_store_registry = VectorStoreRegistry(
vector_stores=[
LiteLLM_ManagedVectorStore(
vector_store_id="YOUR_KNOWLEDGE_BASE_ID", # KB ID from AWS Bedrock
custom_llm_provider="bedrock"
)
]
)
# Make a completion request using your Knowledge Base
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "What does our company policy say about remote work?"}],
tools=[
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
],
)
print(response.choices[0].message.content)
LiteLLM Proxyโ
1. Configure your vector_store_registryโ
- config.yaml
- LiteLLM UI
model_list:
- model_name: claude-3-5-sonnet
litellm_params:
model: anthropic/claude-3-5-sonnet
api_key: os.environ/ANTHROPIC_API_KEY
vector_store_registry:
- vector_store_name: "bedrock-company-docs"
litellm_params:
vector_store_id: "YOUR_KNOWLEDGE_BASE_ID"
custom_llm_provider: "bedrock"
vector_store_description: "Bedrock Knowledge Base for company documents"
vector_store_metadata:
source: "Company internal documentation"
On the LiteLLM UI, Navigate to Experimental > Vector Stores > Create Vector Store. On this page you can create a vector store with a name, vector store id and credentials.
2. Make a request with vector_store_ids parameterโ
- Curl
- OpenAI Python SDK
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-d '{
"model": "claude-3-5-sonnet",
"messages": [{"role": "user", "content": "What does our company policy say about remote work?"}],
"tools": [
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
]
}'
from openai import OpenAI
# Initialize client with your LiteLLM proxy URL
client = OpenAI(
base_url="http://localhost:4000",
api_key="your-litellm-api-key"
)
# Make a completion request with vector_store_ids parameter
response = client.chat.completions.create(
model="claude-3-5-sonnet",
messages=[{"role": "user", "content": "What does our company policy say about remote work?"}],
tools=[
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
]
)
print(response.choices[0].message.content)
Filter Resultsโ
Filter by metadata attributes.
Operators (OpenAI-style, auto-translated):
eq,ne,gt,gte,lt,lte,in,nin
AWS operators (use directly):
equals,notEquals,greaterThan,greaterThanOrEquals,lessThan,lessThanOrEquals,in,notIn,startsWith,listContains,stringContains
- Single Filter
- AND
- OR
- AWS Operators
- Proxy
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "What are the latest updates?"}],
tools=[{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"],
"filters": {
"key": "category",
"value": "updates",
"operator": "eq"
}
}]
)
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "What are the policies?"}],
tools=[{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"],
"filters": {
"and": [
{"key": "category", "value": "policy", "operator": "eq"},
{"key": "year", "value": 2024, "operator": "gte"}
]
}
}]
)
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "Show me technical docs"}],
tools=[{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"],
"filters": {
"or": [
{"key": "category", "value": "api", "operator": "eq"},
{"key": "category", "value": "sdk", "operator": "eq"}
]
}
}]
)
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "Find docs"}],
tools=[{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"],
"filters": {
"and": [
{"key": "title", "value": "Guide", "operator": "stringContains"},
{"key": "tags", "value": "important", "operator": "listContains"}
]
}
}]
)
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-d '{
"model": "claude-3-5-sonnet",
"messages": [{"role": "user", "content": "What are our policies?"}],
"tools": [{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"],
"filters": {
"and": [
{"key": "department", "value": "engineering", "operator": "eq"},
{"key": "type", "value": "policy", "operator": "eq"}
]
}
}]
}'
Accessing Search Resultsโ
See how to access vector store search results in your response:
Further Readingโ
Vector Stores: